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The overall 

EXECUTIVE SUMMARY 

oal of the NASA Computer Science rese rch program, 
described in NASA Technical Memorandum 85631, “NASA Computer Science 
Research Program Plan,” is building the technical foundation within NASA to 
exploit advancing computing technology for aerospace applications. That pro- 
gram consists of three core themes: Scientific and Engineering Information 
Management, Highly Reliable Cost-Effective Computing, and Concurrent Pro- 
cessing. This report focuses on the last of these themes, Concurrent Processing. 

Concurrent Processing (CP) is computing with multiple data processing ele- 
ments cooperating on a single task. Such computers offer significant perfor- 
mance improvements relative to conventional machines. NASA needs very high 
performance computers for problems in aeronautics and space research such as 
flow simulation, real-time control, and knowledge-based systems. 

RIACS held a workshop at Ames Research Center on September 15-16, 1983 
to lay the groundwork for a plan for research and development involvement in 
CP. This report developed out of the discussions at the workshop and the subse- 
quent review of the participants. The principal conclusions of this report are: 

1 .  

2. 

3. 

4. 

5. 

The CP research program must strive for understanding of CP systems as 
complete systems. 
The research needed to gain this knowledge is inherently multidisciplinary. 
It follows that the research teams must be multidisciplinary-- with expertise 
in computer architecture, software, algorithm design, human factors 
engineering, and the target problem domains. 
CP research must be based on clear technical principles focused on compu- 
tational models, mapping of algorithms to architectures, computer architec- 
ture, building programming environments, user interfaces, and techniques 
for system evaluation. 
Access to simulations facilities and prototype CP machines is crucial to the 
success of CP research. Systems with many processors are qualitatively dif- 
ferent from systems with a few. 
NASA should make every attempt to cooperate with other CP research pro- 
grams. 

Over the next ten years, NASA will require computers far more powerful 
than any available today; CP systems are the only way to achieve the extremely 
high performance needed. Support for CP research is essential for NASA pro- 
grams and future missions requirements. The intent of this plan is to provide 
direction for gaining the fundamental knowledge that can substantially advance 
computer systems for aerospace. Because results of this research can signifi- 
cantly improve NASA’s effectiveness, it should be pursued promptly and 
vigorously. 
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1. INTRODUCTION 

This report is the outgrowth of a workshop held at NASA Ames Research 
Center on September 1516, 1983 by the Research Institute for Advanced Com- 
puter Science (RIACS). The workshop was the first step to develop a plan for 
concurrent processing (CP) research and development. The resulting document 
(this report) has been delivered to  NASA, who will use it as input for their plan- 
ning processes in concurrent processing. 

This report extends and refines the portion of the NASA Computer Science 
Research Program Plan (NASA Technical Memorandum 85631) dealing with CP. 
That plan designated research in CP, along with research in Highly Reliable Cost 
Effective Computing and research in Scientific and Engineering Information 
Management, as critical to NASA goals. The computer science research program 
emphasizes research in theoretical and experimental issues critical and unique in 
aerospace applications. Its major goal is fundamental knowledge that can sub- 
stantially advance computing systems for aerospace and improve the effective- 
ness of NASA. In this report, the term “concurrent processing” refers to CP 
systems, which include user interface, software parts libraries, programming 
environments, languages, hardware, storage, input, output, and networks. Here 
“architecture” refers to the structure of the hardwaresoftware system, not just 
the hardware alone. 

1.1 Motivation for NASA Support of CP Research 

Modern high performance computers can deliver up to roughly one hundred 
million floating point operations per second (100 MFLOPS), with speeds averag- 
ing more nearly 10 MFLOPS. Many of XASA’s current activities in science and 
engineering aiready demand more power than can be deiivered by these comput- 
ers. The demand for increased computational power is growing rapidly and will 
continue to grow for the long term future. 

This computational need cannot be dismissed as the result of inadequate 
algorithm design. NASA conducts extensive research and development of algo- 
rithms in many disciplines. This is because no closed-form solutions are known 
for the equations describing many real problems in science and engineering. 
Computers are being used to extend the reach of mathematics into real applica- 
tions by making numerical solutions feasible. 

Over the next ten years, a computing performance increase by a factor near 
one thousand will be needed to sustain normal progress in most disciplines; some 
areas, such as multidisciplinary structural analysis and fluid dynamics, require 
factors nearer to  one million. These requirements cannot be met without compu- 
tational engines capable of sustaining well beyond one billion floating point 
operations per second (1 GFLOPS). They also cannot be met without significant 
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advances in software management technology, data management systems, tools 
for efficient and correct programming, and mappings from programs to 
hardware. 

Uniprocessor computers are today approaching the fundamental physical 
limits to their ultimate performance. While circuit switching speeds and packing 
density will continue to improve, rapid gains are becoming a thing of the past. 
It is unlikely that uniprocessor technology will provide, by the year 2000, sub- 
nanosecond arithmetic cycles (e.g., addition); speeds beyond 1 GFLOPS cannot 
be expected for single-processor machines. The only way to achieve greater pro- 
cessing speeds is with computer systems employing multiple processing elements. 
We are not talking about tens of processors acting in concert, but hundreds and 
even thousands. 

A second motivation for NASA’s interest in CP is the need for highly com- 
pact, reliable computers built in VLSI technology. Not only does VLSI technol- 
ogy make CP systems feasible, concurrent processing is a way to fully exploit the 
potential of VLSI technology. 

There are signs that machine organizations compatible with VLSI implemen- 
tation, today still in prototypes, will begin to be commercially available by 1986. 
The initial versions of these machines will be “attached matrix processors” aug- 
menting a uniprocessor; but it is reasonable to expect such designs to mature into 
stand-alone systems by 1990. These designs will be “linearly expandable,’’ which 
means their processing power can be scaled upward in equal-cost increments of 
hardware. One company is talking about pricing its matrix processor at  $1000 
per MFLOPS. 

So the prospects for good CP hardware by 1993 are bright. The real threat 
to progress toward effective CP systems is the software problem. High perfor- 
mance computer systems of the 1990s will gain their power partly from CP 
hardware and partly from their ability to aid programming and to bring many 
software components simultaneously to bear on the solution of a single problem. 

The ability to aid the design of concurrent algorithms will require signifi- 
cant advances in visual programming; the goal is to make the construction of a 
concurrent computation that uses thousands of processing elements no more dif- 
ficult than the construction of a sequential program of a few hundred lines. 
Today, for example, the programmer of a solution to a flow problem around a 
complicated airfoil must manually design the grid and a mapping from it to the 
3D computational space. This process can take months to arrive a t  a correct 
solution. Concurrent programming systems should be capable of automatic grid 
generation and mapping within a few minutes. 

NASA has many applications which call for existing software systems, each 
requiring high performance computation, to be redesigned and integrated. For 
example, there are several existing subsystems that contribute to the design of an 
aircraft: wing design and flight surface optimization, control system design, 
overall configuration optimization, structural analysis/design, wind tunnel data 
analysis, and flow simulation. Each subsystem’s computational requirement 
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alone is sufficient to justify CP hardware; the prospects for joining these subsys- 
tems into a single automated aircraft design system is constrained more by 
software technology than by hardware technology. The ability to integrate dif- 
ferent software systems into larger systems will require significant advances in 
data management, version control, software parts management, and intelligent 
interfaces. 

It is the need for all these software and hardware advances that gives rise to 
the consensus that CP research is a systems issue extending well beyond the 
hardware. 

A systems approach to concurrent processing must encompass the problem 
domains in which the computation will be applied. Each domain must be 
analyzed for such factors as heterogeneity of the separate processing elements, 
the degree of potential parallelism, the computational models most suited to the 
type of parallelism, the need for floating point computation, the need for real- 
time processing, the need for decision-based processing, the need for symbolic 
processing, the need for database access, and the 1/0 bandwidth. A CP system 
well suited for one application may not be so for another. NASA has a wide 
range of different applications from numeric to symbolic, each one of which will 
require careful study. 

The importance of a systems approach, exemplified by multidisciplinary 
research teams, has been expressed several times recently at other CP workshops. 
The same sentiment was expressed at the RIACS workshop. The participants 
noted, moreover, that this type of approach is a hallmark of NASA research. 

NASA can give as much as it gains by supporting CP research. NASA’s 
applications span a very wide range with respect to types and needs for high per- 
formance computation; some applications are virtually unique to NASA. 
NAS14’s presence in CP research will bring knowledge and experience not other- 
wise represented. It will make NASA’s extensive expertise in algorithms in the 
various domains accessible to the larger community. 

To summarize: NASA has a wide range of projects, critical to its missions, 
whose computational requirements exceed anything possible with uniprocessor 
systems. Concurrent processing systems, compatible with the new VLSI technol- 
ogy and employing new classes of highly parallel algorithms, are, therefore, 
essential to NASA’s success in its missions. The research needed must employ a 
systems approach that simultaneously pools knowledge from the hardware, 
software, and applications disciplines; the software problem and the understand- 
ing of the applications pose greater impediments to progress than the hardware 
architecture. 
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1.2 Process of Developing This Report 

The first draft of this report was prepared from detailed notes taken at the 
workshop by RIACS staff. The draft was circulated in November 1983 among 
all workshop participants, all of whom provided comments, many detailed. A 
second draft was then prepared and reviewed in February 1984 by the subset of 
participants requesting this step. The final version of this report was completed 
in March 1984. 

This report appears to represent the consensus of the group. Disagreements 
are recorded in the few cases where they occurred. 

Because the primary purpose of this report is to concentrate on the essence 
of a research plan, we have deliberately omitted a bibliography. 

This document is not a proposal for research to be conducted by RIACS. 

1.3 Overview of the Following Material 

The starting point for the material that follows is a series of scenarios in 
Section 2 that outline a vision of computing systems for a number of NASA pro- 
gram areas circa 1993. These scenarios reveal three important classes of applica- 
tions: numeric, symbolic-logical, and real-time. 

The research topics that must be encompassed by a CP research program 
with a systems approach are described in Section 3. 

The principles and strategies that will maximize the prospects of a success- 
ful  CP research program are outlined in Section 4. 
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2. VISIONS OF FUTURE COMPUTING ENVIRONMENTS 
FOR SCIENCE AND ENGINEERING 

2.1 In troduction 

This section describes computing needs of NASA scientists and engineers in 
a number of important areas circa 1993. The CP research program must aim for 
these operational goals. 

The material is organized into a series of scenarios, one for each application 
area. The scenarios are based on research projects a t  various NASA centers. 
The areas included are computational f hid dynamics, structural analysis, compu- 
tational chemistry, image processing, flight simulation, flight control, aircraft 
design, and space station management computer systems. For each, we have 
projected the needs of the user communities and the types of computational tools 
to realize the scenario. 

Within each scenario, we distinguish between technological and intrinsic 
computing needs. Technological needs are those that can be met as soon as the 
technology base will permit. For instance, the need for magnetic tape as a 
medium for mass storage and transfer may end with low cost multiple-write opti- 
cal disks. Intrinsic needs are inherent in the the computations to be performed. 
For instance, an image processing task will require access to the image data 
regardless of the ty e of memory holding the data. As another example, the 
need to perform 10 operations to solve a problem may be intrinsic in the a lge  
rithms to solve that problem, whereas the need to obtain a solution within 10 
minutes is technological (it can be met as soon as a 3.3 GFLOPS system is avail- 
able.) We will emphasize the intrinsic needs, which cannot be met simply by 
better technology. 

To permit comparisons of the scenarios, we will explicitly mention the 
char~cteristics of nperatino types, data managementi amount and type of data 
access, computational homogeneity, and interaction with the outside world. 

IP 

2.2 Scenarios of User Activities in Ten Years 

2.2.1 Computational Fluid Dynamics 
NASA’s role in the aerospace community has always included fluid dynam- 

ics. Digital computer simulation techniques known as computational fluid 
dynamics (CFD) are an important component of the NASA effort. Computa- 
tional fluid dynamics has been used to advance understanding of fluid flow and 
to study performance of flight vehicles. The potential payoff from very high 
performance computational fluid dynamics facilities includes the ability for 
engineers to more easily and thoroughly search for aircraft designs optimized for 
fuel efficiency, maneuverability, and other characteristics. Aircraft designers 
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will be able to conduct detailed testing of proposed designs, building confidence 
before committing to construction of models or prototypes. 

Workers in this problem domain use the Navier-Stokes equations to model 
fluid flow. These equations, which appear to  be an accurate model of the real 
world, will continue to be the foundation of this field. To live within current 
technological limitations on computer speed, researchers have been forced to con- 
sider these equations only in simple cases such as inviscid flow. The eventual, 
but extremely challenging, goal is cost-effective simulations using complete 
Navier-Stokes equations, including turbulent momentum and heat transport 
terms. Another goal is to model turbulence on a scale more detailed than that 
provided by the grid over which the equations are solved. 

Future progress in computational fluid dynamics will follow two paths. One 
deals with fluid flow around more complicated (and realistic) structures. In the 
past, analyses have been limited to a single component of a proposed aircraft. 
For example, in the early 1970s, the analysis of an isolated wing strained avail- 
able computers; today, simulating airflow about an entire aircraft remains 
beyond the limits of feasible computation. By 1993, researchers and engineers 
will need to deal with complete vehicle structures. 

The second path is the demand for greater accuracy and detail in simulation 
results. In typical contemporary complete-vehicle simulation, only the terms in 
the Navier-Stokes formula dealing with inviscid fluid flow are computed. Under 
certain conditions, however, such as flow a t  near-transonic speeds, the accuracy 
of a solution is significantly improved when viscous terms are included. The 
small-scale flow effects become more important as precision is increased and 
when aircraft surfaces and configurations must be optimized. To obtain a 
greater level of detail, flow analysts will require finer mesh spacings, which imply 
geometric increases in processing capacity. 

A hypothetical system fulfilling these needs may have a user interface as 
follows. A high-resolution (5000 by 5000 pixel) color graphics panel oriented like 
a drafting table is used to display input and results. The system contains an  
extensive library of airframe component descriptions that can be retrieved and 
combined as needed. The three-dimensional constructs can be edited using a 
light pen or mouse, while working both with standard twedimensional projec- 
tions and perspective views. Numeric quantities are entered by pointing to the 
structure and speaking the digits. This interface should be far less cumbersome 
than one oriented strictly toward keyboard input. 

When the drawing is prepared, the engineer switches to flow simulation 
mode. Within this mode a collection of solution regions, applying appropriate 
solution methods to different parts of the structure, is set up. The user environ- 
ment includes an expert system that advises when the user specifies incompatible 
solution techniques and automatically computes the interfaces between compati- 
ble techniques in adjacent regions. The expert system then proposes a point grid 
for the problem, based on information about well-formed grids contained in the 
knowledge base; the user can modify this initial grid if desired. The user then 
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selects the wind vector, density, temperature, and necessary parameters before 

mance computer. 
When they are available, the results of the simulation are presented on the 

color display via animated flow lines overlaid on the image of the aircraft struc- 
ture. These lines show the positions of features such as shock waves, separated 
flow, and vortices, which may suggest deficiencies in the design. Optional 
displays, presented as three-dimensional translucent regions associated with por- 
tions of the structure under test, can show important quantities like pressure, 
density, momentum, or energy. These reports can be saved as input to optimiza- 
tion programs. Using real-time rotation and translation, the engineer can view 
the structure and overlaid graphics from different angles and distances. If the 
simulation results contain an error greater than the allowable tolerance, the 
display flashes in the regions affected. Within a few minutes the information 
necessary to guide further changes to the proposed design is available. 

Computational fluid dynamics problems typically involve large data sets, 
currently on the order of tens of megawords. In the future these data sets will 
be much larger; sizes in the hundreds of megawords are projected. NASA esti- 
mates that the computational requirements for a realistic flow simulations about 
a complete flight vehicle are a processing speed of 1 GFLOPS, 32 million 64-bit 
words of main memory, and 256 million 64-bit words of secondary memory. 

Users of aeroflow programs should be able to interact with their executing 
code at least to the extent of monitoring the progress of a run so that i t  can be 
aborted if the partial results are unsatisfactory. 

Fluid dynamic calculations are almost always based on floating point 
numbers. The airflow at  a given point depends only on the airflows at  neighbor- 
ing points; the same equation holds throughout a region of space. This type of 
calculation is well suited for numeric CP systems. 

starticg the siFlu!ati=-,. The sil?;r;]atisn is run efi an ----I--'--:- uuueriyiug - L ' - L  uigu yerfor- 

2.2.2 Structural Analysis 
Structural analysis is a broad discipline that addresses how to calculate 

stress, vibration, and heat transfer in physical bodies, and the control of these 
structures. Finite-element models are often used for the calculations. The major 
applications include nonlinear analysis for large deflections and plasticity (e.g., 
studies of failure mechanisms), nonlinear transient response (e.g., dynamic 
failures of flight vehicles), minimum weight structural design, and analyses that 
include aspects of multiple disciplines (e.g., thermal structural behavior of aeroe- 
lasticity). These applications will require from one thousand to one million times 
greater computational speed than that currently available. 

The goal is to model considerably more complex (and realistic) structures a t  
high levels of detail. The largest problem solved to date using finiteelement 
structural analysis was the linear static analysis of an undersea oil storage plat- 
form. This problem had over 720,000 degrees of freedom, took about one week 
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of processing time on a Univac 1110 computer, and generated 850,000 pages of 
output. 

Other representative finite-element structural applications include the 
analysis of the wing-body intersection for the Boeing 747 and crash analysis of 
the Piper Navaho light twin engine aircraft. The structural analysis of the Boe- 
ing 747 is critical because of the sheer magnitude of the project -- engineers 
require high confidence in a proposed structural design before they attempt 
building the prototype vehicle. In the crash analysis of the Piper aircraft, 
analytical results were compared with data gathered by instruments installed in 
purposely-crashed vehicles; it helped define adequate structural models for such 
aircraft and provided an understanding of vehicle crash dynamics. 

The major steps in structural finite-element calculations are as follows. A 
three-dimensional model of the subject structure is input; this is today done by 
inputting structural member coordinates, connections, material properties, loads, 
etc., but could be greatly improved with an advanced graphics display system. 
The matrices defining the properties of each element (node) in the structure are 
generated. The equations for static stress, vibration, buckling, transient 
response, and heat transfer are solved. The results of these analyses can then be 
used as a basis for structural optimization to obtain minimum weight designs. 

A hypothetical system to support future structural analyses will use a high 
resolution graphics screen for output; colors can be used to show changing forces 
throughout the structure as simulated loads are applied; weak elements can be 
detected and highlighted; excessive deformation of a structure under stress can 
be displayed. Hidden line and plane removal is be done in real-time as the user 
moves the point of view about the structure under investigation. For input, 
geometric primitives are provided in the user interface environment so that users 
can construct complex structures easily from substructures whose descriptions 
are stored in a library. 

A baseline problem today in this field is a structure with 10,000 elements 
and 10,000 equations. Future problems will be much larger. Calculations for 
vibration and buckling analysis can be particularly lengthy because they compute 
eigenvectors. 

Problems in this domain tend not to be homogeneous, but they often are 
decomposable into many homogeneous substructures. They require high- 
precision floating point calculations and large data sets; they require frequent 
access to their data. Because the substructures can be solved separately, an 
attractive CP system for static structural analysis might be composed of hun- 
dreds or thousands of processors of moderate power. A similar situation occurs 
for nonlinear transient response where moderate bandwidth communications 
among neighboring processors is required. For eigenvalue problems, decoupled 
parallel computations are not so easily utilized and other CP system configura- 
tions might be more appropriate. 

There is a strong potential for fruitful interaction between computational 
fluid dynamics and structural analysis. For example, in transonic aerodynamics, 
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the results of flow analyses could be coupled with structural-response analyses to 
study wing flutter. Appropriate CP system structures for such multiple discip 
line analyses must be determined. 

2.2.3 Computational Chemistry 
The goal of research in this domain is reliable calculation of the properties 

of matter. The subareas of interest to NASA include atmospheric entry physics, 
combustion, stratospheric chemistry and modeling, climatology, crystallite pro- 
perties, surf ace diffusion, chemisorption, catalysis, and materials embrittlement. 
Computational chemistry is expected to become increasingly important in 
NASA’s research and development efforts. 

With current computers, predictions of the properties of gaseous species can 
be made using Schroedinger’s equation. Within current computational limita- 
tions, this approach can determine the quantum mechanical behavior of 
molecules of up to eight atomic nuclei and up to forty electrons. Typical molec- 
ular properties computed include potential energy surf aces for ground and 
excited states, equilibrium geometries, probabilities for transitions between elec- 
tronic states, and molecular spectra. The information from these computations 
can be used as input to calculations of other factors such as reaction rates, bulk 
material properties, and solid-gas interactions. At  this level of simulation, com- 
putational chemistry can produce results comparable to high quality laboratory 
measurements. 

Quantum calculations can also be performed on systems composed of a gas 
species interacting with a crystal, e.g., OSNi,, or Fe5,H. The technique can be 
used to model gas species interacting with metal surfaces. The results from these 
calculations can be compared directly to experiment or can be used to derive 
effective inter-atomic forces to be used as the basis of atomistic simulations. 
Larger systems of matter with up to 10,000 atoms can currently be studied using 
such an approach. The results from this type of simulation are helpful in inter- 
preting exper-irrientai resuiis. 

To date, results have shown computational techniques to be a valuable addi- 
tion to the traditional methods of chemistry. Computers and quantum chemis 
try can provide reliable data for properties of small molecules, nicely comple- 
menting laboratory techniques. Computational chemistry also allows investiga- 
tions that might otherwise be infeasible in the laboratory. Atomistic simulations 
of materials properties can provide insight into phenomena observed on the 
macro-scale. Computational chemistry provided useful information aiding design 
of the heat shield for the Galileo entry probe mission to Jupiter. In a recent 
space-shuttle experiment, a prediction of this research -- that  floridated kapton 
would resist decomposition from the impact of high energy oxygen radicals -- was 
confirmed. 

The next steps in computational chemistry research are to study the proper- 
ties of transition metal clusters, repeating components of polymers, and, for fer- 
rous metals, the mechanisms of combustion, catalysis, and hydrogen-accelerated 
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crack propagation. NASA estimates that such problems will require computer 
systems with three orders of magnitude greater speed and memory than today’s 
supercomputers. 

The calculations needed for these problems require high precision floating 
point numbers (usually 64 bits). The data sets are large and access patterns not 
as regular as for computational fluid dynamics problems. The minimum interac- 
tion with the user is for termination of bad runs. Dynamic modification of the 
solution technique for selected regions of a progressing simulation will be a 
powerful tool. 

Because the algorithms used for computational chemistry are less regular 
than, for example, those of CFD, this domain will require more research into 
algorithm concurrency. There may also be great potential in reconsidering the 
algorithms now used for sequential processing. 

High resolution graphics figure prominently for displaying results. The user 
will view three-dimensional molecular skeleton or spacef illing models, color- 
coded to distinguish atomic species, electrostatic field strength, and other charac- 
teristics. Zoom, pan, rotation, and cross-section display will allow inspection of 
molecular surf aces and internal structure. 

With a central computational engine capable of 1 GFLOPS, it will be possi- 
ble to tackle problems such as all-electron quantum mechanical analysis of the 
kapton monomer, effective core potential analysis of catalysis in materials such 
as palladium, and 3D atomistic simulation of systems with as many as 50,000 
atoms. The programming interface must support a software library and com- 
mand language allowing simple specifications, in the chemist’s terminology, of 
the desired parameters. Eventually these systems will support molecular 
engineering. 

2.2.4 Image Processing 
Image gathering systems will continue to figure prominently in NASA mis- 

sions in the future. The scientific and economic value of past spacegathered 
imagery guarantees this. NASA missions monitoring weather and earth 
resources have been outstanding successes, returning data of exceptionally high 
and immediate value. 

In these missions, the flight vehicle has been treated as the collector of data 
to be analyzed later by computers on the ground. But the sheer volume of data 
returned places a heavy burden on available computer systems. Future missions 
will strain computing resources further. In many cases, much of the data is not 
analyzed until years after its collection. NASA estimates a growth factor of 
about 100 in the quantity of data collected from orbiting vehicles over the next 
decade, much of it imagerelated. 

Typical high resolution images contain on the order of 25 million %bit pic- 
ture elements. To reduce the amount of data sent to  earth, NASA scientists are 
studying how to use on-board computers, which will be special-purpose CP sys- 
tems that extract data only from scenes of interest to human observers. For 
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example, data from regions of e2rt.h obscured by c!nx!s can be strmrr?arized or 
deleted; geometric and radiometric corrections may also be made by on-board 
computers. There will always be a need to process images in many different and 
novel ways -- e.g., image enhancements -- that cannot be anticipated during a 
satellite’s design; hence, ground-based image processing systems will remain 
necessary. 

Not only is the volume of data so high that image processing systems capa- 
ble of output in real time are taxed to their limit, but qualified human analysts 
are in short supply. Therefore, NASA is also interested in coupling CP image 
analyzers with expert systems to  automate image understanding and identify 
objects within scenes. A significant amount of progress has already been made 
with unsupervised image feature extraction to determine ground cover type. 

CP systems hold great promise for achieving the processing speeds required 
for image analyses. A significant amount of research has already been completed 
in parallel algorithms for image processing. Image computations typically 
require substantial amounts of integer arithmetic as well as floating point, regu- 
lar access to very large data sets, and homogeneous processing. 

2.2.5 Flight Simulation 
Simulators are used for flight crew training. They reduce the risk to man 

and machine of flying aircraft with inexperienced crews. They are also signifi- 
cantly cheaper to operate than the vehicles they simulate. The goal of simula- 
tion is to provide the most realistic experience possible to the pilot. Simulators 
must support mission profiles such as low level penetration, air-to-air combat, 
mid-air refueling, and landing approaches. Future simulators will require the 
real-time generation of video displays coupled with real-time response to meas- 
urements of the pilot’s actions. 

Today’s flight simulator imagery lacks detail and realism; the techniques 
include moving a camera over simulated terrain and using a graphics system to 
generate stick images of terrain. The moving-camera technique suffers from opt- 
ical distortion and limited viewing fields, both of which seriously limit NASA’s 
important helicopter simulations. 

Realistic wide screen images generated by special-purpose CP hardware will 
be needed in future flight simulators. This equipment must be connected via high 
bandwidth networks to the computer systems that handle the real-time calcula- 
tions of the flight vehicle’s state and position. Although these calculations are 
extensive, they are several orders of magnitude less complex than those required 
for real-time image generation. 

2.2.6 On-Board Control 
Current high-performance aircraft rely heavily on computers for flight con- 

trol. Several current aircraft are dynamically unstable; without stabilizing com- 
puters, they could not achieve satisfactory operation. New levels of performance 
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and efficiency can be achieved with aircraft that would otherwise be both 
dynamically and statically unstable. 

On-board control computers must satisfy many constraints, such as limits 
on volume, mass, and power consumption. They must operate reliably in harsh 
environments where mechanical ruggedness, radiation hardening, and tolerance 
of temperature extremes are all essential. These computers also have some of 
the most stringent real-time deadlines known. 

While reliable computing per se is outside the scope of this document, 
research in CP is inescapably allied with highly reliable systems: replicated pro- 
cessing elements present new opportunities to achieve high reliability; many CP 
projects today include tasks to study the reliability of the new architecture. 

Future on-board computers, now being called “pilot’s associates,” will be 
able to provide navigation service, optimize flight paths, avoid collisions, gen- 
erate and update flight instrument displays, monitor long-term vehicle perfor- 
mance, establish and maintain required logs, and automatically receive and 
record information about airport and airspace changes for future recall. 

2.2.7 Space Station Manager 
The space station will be a complex assembly of various systems, perhaps 

one of the most heterogeneous designed by man. Some of their functions will 
include scheduling experiments, life support, navigation, communication, control 
of experiments, control of manufacturing processes, and troubleshooting. High 
performance expert systems based on CP architectures may help make these 
operational decisions. Expert systems technology will figure prominently in these 
systems because of a strong need for intelligent interfaces and automated 
decision-making . 

A space station manager would monitor all on-board subsystems and main- 
tain links to ground systems. It would detect failed or failing subsystems and 
attempt reconfiguration to keep their functions operating; it would advise human 
operators on what repairs to undertake. This expert system would have to cope 
with all conceivable combinations of failures because the margin for error is too 
small and the window for rescue too long. This system would monitor the per- 
formance of the other subsystems so that gradual performance losses that 
preceding some types of outright failures can be detected. Such a system would 
help improve mission effectiveness by reducing unplanned downtime and optim- 
izing schedules for using equipment. 

2.2.8 Automated Aircraft Design 
Currently, at each of the Ames and Langley Research Centers, there are 

several large software complexes used to design aircraft. These include design 
and optimization of flight surfaces, evaluation of overall vehicle configurations, 
structural analysis/design, design of control systems, wind tunnel data analysis, 
and flow simulation. Each software complex is enormous. Each requires very 
large computational resources in its own right. Each contains routines, some ten 
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or fifteen years old, that are badly in need of redesign and modernizat.ion. 
Maintenance of this software often requires excessive time from research staff. 

NASA recognizes that its approaches to aircraft design can be made much 
more effective by integrating these separate software systems and is working 
toward this. Extensive computer system support will be required -- for revision 
control, software parts management, common interfaces, and large computations 
spanning several machines. A expert-system level user interface will be required 
to  help select software parts and combine them into the solution of a given prob- 
lem, to help manage the development and installation of new software modules, 
and to organize the many large computations that must contribute to an overall 
aircraft design. 

2.3 System Requirements 

The above scenarios reveal three basic types of computational needs: 
numeric (N), symbolic-logical (S), and real-time (R). For each problem domain 
there is a profile setting forth the extent to which each basic type occurs. 

Numeric computations are typically floating-point intensive. They are 
important in evaluating models of physical processes over grids using a h o m e  
geneous description of the relation between each grid point and its neighbors. A 
CP computer of homogeneous structure with fast communication between con- 
nected processors is well suited for these computations. The performance of 
such computers is often crudely measured by the maximum number of floating 
point operations per second (FLOPS) of which they are capable. 

Symbolic-Logical systems expend the bulk of their processing in retrieving 
and manipulating the elements of large databases. They have a low density of 
floating-point operations but a high density of branching operations and 1/0 
operations. A computer with high bandwidth access to the database and unifor- 
mity of addressing information is well suited for these computations. The per- 
formance of such computers is often crudely measured by the maximum number 
of logical inferences per second (LIPS) of which they are capable. 

Real-Time systems typically have many asynchronous inputs of physical 
quantities that must be processed and acted on within strict time limits. They 
are constituted of many near-independent processes of specialized functions. 
Reliability is very important. The communications environment is distributed. 
Network bandwidth requirements may vary according to the amount of data 
acted on by a processor. A central concept of these systems is interrupts, which 
are the signals that important events have occurred; these signals trigger the 
invocation of interrupt handlers (processes) whose execution must be completed 
within given deadlines. The performance of such computers is often crudely 
measured by the maximum number of completed interrupts per second (CIPS) of 
which they are capable. 
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Each of these system types has a different set of demands on a computer 
system. An architecture suitable for one may not be well-suited for another; an 
operating system suitable for one may be inadequate for another. Each problem 
domain may have a mixture of elements of the different types -- for example, an 
on-board flight control system may combine numeric aspects of image analysis 
with real-time needs; the automatic aircraft design system may combine numeric 
and symbolic needs. 

An example that combines all three types is a “pilot’s associate” for high 
performance aircraft, as described in the DARPA Strategic Computing program 
report. Such a system may interpret and respond to image inputs in real time. 
Another example is an expert system for fault diagnosis and repair of image 
based systems on the space station. 

To summarize: Each problem domain has a profile setting forth the extent 
to which the domain requires computations of each type. A given problem from 
a domain can be “sized” by determining for it the capacities in FLOPS, LIPS, 
and CIPS of the supporting computer system that would guarantee the ability to 
solve the problem within the desired time. 

Table 1 describes the systems of the eight scenarios with a profile showing 
which types of basic computation appear in each domain. 

Table 1: Classification of scenarios by predominant type of computation. 

Structural Analysis 

Computational Chemistry 

Image Processing 

Flight Simulation 

On-Board Control 

Space Station 

Aircraft Design 

--- 
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2.4 Observations 

Six other observations about future CP systems follow from the usage 
scenarios. First, the need for greater performance pervades all scenarios. While 
it is not surprising that the scenarios demonstrate needs for high performance 
computation -- which was the point of the exercise -- it is enlightening that the 
speeds sought over the next ten years are three to  six orders of magnitude higher 
than possible with today’s supercomputers. 

Second, most of the scenarios reveal a need for large memory systems. The 
data sets arising in most of the numeric profiles are large and growing. Large 
secondary memory will also be important in applications requiring large com- 
ponents of knowledgebased processing. 

Third, most of the scenarios show a strong need for advanced visual 
displays. Such displays will have features including at least windows; 3D rota- 
tion, zoom, translation, and pan; powerful graphics editing; hidden line and sur- 
face removal; and perspective rendering. These features must operate in real 
time. 

Fourth, useful systems may combine characteristics of the basic computa- 
tional types -- numeric, symbolic-logical, and real-time. 

Fifth, there is a wide range of problem sizes to  be handled by CP. Some 
problems, especially in real-time applications, may require as few as two proces- 
sors, and yet are legitimate concerns for CP research. But the really challenging 
problems for CP research require hundreds or thousands of processors; in these 
areas, conventional models of communicating sequential processes do not apply. 
For these domains, linear scaling of capacity by adding hardware increments is 
critical; the translation of a program to a machine must be parameterized by the 
resources of the machine. 

Sixth, progress in most of the scenarios requires advances simultaneously in 

current algorithms for the problem domains. Advanced data base management 
approaches for scientific and engineering information are likely to be important 
as well. 
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3. RESEARCH PROGRAM DESCRIPTION 

3.1 Introduction 

This section describes the nature of the topics that ought to be studied in 
NASA’s CP research program. In describing these topics, we will emphasize the 
process  and the conceptual base of a systems-oriented research program. Our 
intent is to set forth the research themes that must be studied together in a 
coherent program. In other words, we will address principles, not procedural 
issues. 

An important aspect of systems-oriented research is a sharp focus, within a 
project, on a well-defined problem domain or set of domains. The project team 
should comprise experts from each discipline that must contribute -- e.g., scien- 
tists and algorithms experts from the problem domain, hardware architects, 
graphics experts, database experts, operating systems experts, and reliability 
experts. In the context of NASA, most CP research teams will include persons 
of all these types. 

3.2 Research Themes 

The following subsections describe research themes that will appear in most 
CP research projects. 

3.2.1 Models of Computation 
A computational model, which is an abstract representation of the frame- 

work in which computations proceed, must be the central focus of the project. 
In our experience, the most successful computer systems projects have been those 
in which the designers had, from the outset, a clear conceptual picture of how 
their machine would perform its computations, how the hardware would imple- 
ment the model, how the software would map into the model, and how typical 
problems would be expressed as software. 

The computational model must provide a precise description of these con- 
cepts: 
1. Data. What are the atomic objects on which computations operate? How 

are objects assembled into larger structures? May objects be created and des- 
troyed as the computation proceeds, or are they all known a t  the start of the 
computation? How are objects named? How are components of objects 
selected? How are objects updated in both structure and value? May objects 
be shared among several operators? What rules govern the retention and life- 
times of objects? 

2. Operators. What are the basic operators? How are more complex operators 
built up from simple ones? Is an operator’s effect limited to its explicit 
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3. 

4. 

5. 

6.  
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operands or may i t  produce side effects? How is an  operation initiated -- by a 
control signal, by the arrival of operands, or by a request demanding a result? 
How does an operator obtain operands -- by value, by reference, or by some 
other means? 
Modularity. To what extent does the model support “abstraction,” i.e., the 
building of pieces from smaller pieces? Can complex data structures be built 
hierarchically? Can complex operators be built hierarchically? How are new 
structured pieces saved and made available for future reuse? 
Communication. How do the components of the model exchange informa- 
tion? Are there control signals? Movements of data? Both? Is there a 
shared memory for all operators? For groups of operators? What data paths 
are permitted (topology)? Can the data paths be altered dynamically (recon- 
f igurability)? Can data paths be separated into disjoint groups (partitionabil- 
i ty )? 
Repeatability. Which components of a computation must have functional 
behavior (their outputs depend uniquely on their inputs)? Which components 
are serializable? What happens if a component’s execution behavior is not 
determinate? 
Dynamic Behavior and Static Description. What notation is used to 
specify the above components and rules (language)? How is the dynamic 
behavior of a computation described (semantics)? What is the correspon- 
dence between static descriptions and dynamic behaviors? 

Perhaps the most successful computational model of all time is the 
“sequential-process model,” often called the “von Neumann model” because of 
the exceptionally clear descriptions of it found in von Neumann’s papers. The 
components are: 

1. 

2. 

3. 
4. 

5. 

Data: Integer or floating point quantities stored in memory locations of 
fixed size; memory is a linear array of locations. 
Operators: Atomic operators are those named by hardware opcodes; they 
obtain their operands only from registers, which can be loaded from memory 
by special operators. All operators are implemented in the processor. Some 
operators exchange information with the 1 / 0  unit. Operators are encoded as 
instructions stored in memory. A program counter register in the processor 
contains the address of the next instruction to be moved into the processor 
and interpreted. 
Modularity: None in the basic model; each program is self-contained. 
Communication: Information can be transferred between the processor 
and the memory, or between the processor and the 1/0 unit. The program 
counter acts as a narrow channel between an instruction and its successor. 
Static and Dynamic: The static description of a program is a sequence of 
instructions in assembly language. The dynamic description is the sequence 
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of steps performed as the program counter steps forward. All program exe- 
cutions are determinate. 

This basic model underlies all conventional programming languages, which gen- 
eralize its basic components. For example, these languages define basic and 
structured types; they have basic operators but view subroutines as complex 
operators; they are modular; and they evoke processes as a current statement 
pointer moves forward. 

The basic model has been generalized to encompass collections of executing 
programs (processes) that exchange timing signals by semaphores and exchange 
data through interprocess ports or through shared memory. This extension is 
sometimes called the “communicating sequential processes” (CSP) model. It is 
one possible model for concurrent processing systems. 

A different model for concurrent processing is the data flow model, in which 
operators “fire” as soon as all their operands are available; the firing of an 
operator makes results available to successor operands. Static descriptions of 
data flow computations are graphs displaying the directed data paths between 
operators. Dynamic descriptions take the form of history arrays that display the 
sequences of values associated with each output of the graph. 

Another model is the Configurable Highly Parallel (CHiP) computer. It con- 
sists of a regular array of processing elements (PES) interleaved with programm- 
able switches. The interconnection structure (connecting each PE to its immedi- 
ate “neighbors”) can be altered to suit each phase of a computation and also to 
ignore faulty PES. Static descriptions of computations take the form of graphs 
constructed on an interactive display. Dynamic descriptions take the form of 
histories of values at the nodes of these graphs. 

In fact, a rich variety of models for CP has been proposed and studied over 
the past years. These models (and examples of language embodying them) in- 
clude: 

Communicating Sequential Processes (e.g., CSP) 
Data flow (e.g., VAL, or SISAL) 
Functional compositions (e.g., FP) 
List processing (e.g., LISP) 
Stream processing (e.g., AF’L, LUCID) 
Vector processing (e.g., VECTORAL) 
Reconfigurable processor arrays (e.g., POKER) 
Logic programming (e.g., PROLOG) 
Relational database (e.g., SEQUEL, QBE) 

Systolic processing and regular mesh arrays are also models, but since a given 
array has a fixed purpose, no high-level programming languages (or environ- 
ments) have been proposed for these cases. 
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It is important to note that the model associated with a project may evolve 
xith the pisject over time, and that more than one model may be used in a pro- 
ject. 

It is important that a diversity of projects be undertaken, encompassing 
many models of parallel computation. 

3.2.2 Mapping of Algorithms to Machines 
In addition to providing a precise statement of the syntax and semantics of 

a given scheme for parallel computation, a model is the basis for evaluating the 
cost of computation. Computations in the sequential process model, for example, 
are typically evaluated either for space or time when both the program and data 
are in random-access store. Computations in a parallel model must use different 
metrics, such as the maximum number of operations per second for a given 
amount of hardware; these evaluations must take into account the cost of com- 
municating among processing elements, a factor not important in the sequential 
process model. 

Another cost that must be accounted for are the “losses” from mapping a 
problem to the model and the model to the hardware. An abstract algorithm in 
a problem domain can be represented as a graph whose nodes denote operators 
and edges data paths. If the abstract algorithm’s data paths cannot be directly 
represented in the model, they must be simulated using extra model operators 
and paths; this will cause a loss due to inability to directly “embed” the abstract 
algorithm into the structure of the model. There may be a similar loss in embed- 
ding the model into the machine on which the model’s interpreter is imple- 
mented. Very little is known about these losses, and there are some very chal- 
lenging optimization problems to minimize them. 

The problem of determining the cost of computation in different CP models 
poses some challenging theoretical problems, but experimental studies are also 
necessary. For each combination of [domain, model, machine] we need to 
answer. How effective is the me&!, realized 2s z !anguage riinning cln a given 
machine, in helping solve problems in the domain? The most practical approach 
to  finding the answer is to program typical problems from the domain in the 
language and run them on the machine. Such experiments can produce objective 
evidence of the costs of computation because the programs and machine perf or- 
mance can be directly measured. They can also produce subjective evidence of 
effectiveness because the scientists participating in the experiment can be asked 
whether this form of programming is an improvement, whether the model sug- 
gested new or better algorithms, etc. To accomplish this on a large scale -- for 
many domains, models, and machines -- would be a substantial project. 

3.2.3 Language 
A CP language is the syntax for describing computations in a given CP 

model. The purpose of a CP language is to permit the parallelism occurring in 
an algorithm to be expressed explicitly. Attempts to  detect parallelism in 
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programs expressed in sequential languages have been successful at  detecting 
parallelism of degree 10 or 20, but do not appear capable of detecting parallelism 
of high degree (100 or more processors). The sequential process model obscures 
parallelism. 

Moreover, sequential programming notation is likely to be tedious for 
expressing parallel algorithms. Much careful thought needs to be given to 
language design for CP. The goal is to permit expressing highly concurrent algo- 
rithms with effort near the theoretical minimum. 

An example will illustrate what we mean by the “theoretical minimum.’’ 
Suppose we have a square region of 2D space, 100 units on a side; we want to 
solve for the transient flow field when the region is filled with a square mesh of 
unit side, the value a t  a node is the average of the values at  its immediate neigh- 
bors, and all nodes are initial zero except the left edge is initially 1. This 
description specifies a computation over 10,000 processors. Two possible 
minimal descriptions are: 

1. Devise a syntax that allows declaring square regions, with each of 
which is associated a mesh size, an initial condition, and a node equa- 
tion. In this syntax, the program for the computation above would 
take about as much space as the English word description. 
2. Use an interactive graphics system that allows the programmer to 
draw a square and enter the properties (edge size, mesh spacing, node 
equation, initial conditions) into slots on a menu. 

Once either type of description has been given, the compiler would convert it to 
a collection of programs, one for each of the 10,000 processors; it would load 
those programs and provide for initiation of the computation. 

The central point is that concepts of the CP model must have compact 
expressions in the language. The language must take maximum advantage of 
regularity: the programmer should have to specify an element and its associate 
rule of replication only once. lnteractive graphical methods of programming are 
more attractive than symbolic linear notations because many concurrent a lge  
rithms are naturally expressible as pictures. 

To increase its power, the language must support parts-oriented (modular) 
programming. A part is intended to be a reusable component that can be 
“plugged in” to any portion of a computation tha t  matches its interfaces prop- 
erly; parts can be composed into larger parts and saved in libraries. In a sequen- 
tial model, a part is a closed subroutine with a standard input and output. In 
general, the definition of admissible parts will depend on the CP model. In the 
example, squares and rectangles would be admissible parts because they can be 
plugged together to form a program for a larger region; but circles would not. 

The ability to prove that a program meets its specifications will be even 
more important for CP than it has been for sequential processing. The design of 
a CP language must therefore consider the ease with which correctness proofs 
can be carried out automatically. 
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3.2.4 Hardware 
A CP model can be implemented on any machine by implementing an inter- 

preter using the assembly language of the machine. Whether this is efficient will 
depend on the extent to which the machine’s concepts are similar to the model’s 
concepts. For example, while list processing is straightforward on LISP 
machines, on general purpose computers it can be quite inefficient. 

The study of hardware in a CP project focuses on direct implementation of 
the interpreter for a CP model. Prototypes are important because they will help 
reveal features of the model that  defy efficient interpretation, which may lead to 
a refinement of the model. Prototypes can be used to help evaluate design 
tradeoffs because alternatives can be tried and their performance measured. For 
example, the CP model might call for an interconnection structure that cannot 
be implemented cheaply on the available physical interconnection network; this 
fact could be fed back to the model and language design processes. 

3.2.5 Programming Environment 
Today the term “programming environment” denotes the collection of facil- 

ities the user employs to express, compile, link, debug, and analyze the output of 
his programs. 

We believe that, in CP systems, these functions will be generalized as p r e  
gramming becomes more clearly separated from’ the use of programs. Program- 
ming will continue to rely on tools for expressing, compiling, linking, and debug- 
ging program parts; but these tools will require development for concurrent pro- 
gramming. Programming will require a clearer focus on the library of program 
parts and program templates (partial specifications that will become parts when 
a few parameters are specified). This implies that CP programming cnviron- 
ments will require a database system that allows the location of parts- 
specifications by queries on their functions, that enforces compatibility of inter- 
faces between parts, and that coordinates revisions and new versions among 
many contributing programmers. I t  also implies management procedures that 
seek to provide reliable, robust, well-tested software parts in official libraries. 

The task of using programs -- i.e., composing parts to construct the solution 
of a given problem and invoking their execution on underlying machines -- will 
move to a high level and inherit much knowledge of the domain of use. Here 
there is a great opportunity for expert systems to be deployed at  the user inter- 
face. These systems can contain knowledge of the problem domain, rules of 
thumb about which parts are best for what problem instances, and subsystems 
that construct solutions by plugging together parts selected from the parts 
library. 
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3.2.6 Fault Tolerance and Reliability 
Fault tolerance refers to the masking of hardware failures at the level of the 

computational model -- i.e., all the operations of the model can be guaranteed to 
work correctly even if the underlying hardware does not. Fault tolerance does 
not refer to  robustness against errors in programs expressed in the model’s 
language; that is in the province of program correctness. 

In many of its missions, NASA has special requirements that hardware sys- 
tems be reliable. So studies of methods to make CP systems fault tolerant are 
especially important. NASA has considerable experience in reliable systems that 
can be brought to CP systems projects. 

Increased reliability will also appear as a performance improvement if it 
necessitates fewer checkpointing operations. 

Because many CP systems will be based on highly redundant hardware and 
will employ VLSI designs, it may be possible to provide a high degree of fault 
tolerance in the initial design at  marginal cost. 

3.2.7 System Evaluation 
System evaluation means two things, both important, in the context of con- 

current processing. The first is that we need to rethink performance metrics to 
be sure they give useful information in the new context. D o  the usual system 
metrics, throughput and response time, extend to concurrent computation s y s  
tems? How does the cost of communicating among processors affect basic 
metrics? How can the successful tools of queueing network theory be applied to 
CP systems? For systems capable of being used in a “pipeline mode” (a second 
computation can be initiated before the first has cleared the system), are any 
new metrics or modeling techniques needed? 

New systems design projects should include a task to develop a performance 
model of the system that guides the future designs and the experiments on the 
current design; and evolves as the design itself evolves. This model can employ 
analytic and simulation components. 

Because the quality of interaction between man and machine is important to 
many NASA missions, human factors experts should be consultants to, if not 
participants in, many CP systems projects. 

The second meaning of system evaluation arises in the design process. Many 
American computer design projects pay too little attention to experiment, meas 
urement, and tuning while the system is being designed. A few machines have 
been designed in which the instruction set is optimized for the most probable 
patterns of the common compilers and the most frequent operating system 
operations; and conversely, constraints have been placed on compilers so that 
statically checkable errors do not have to be detected by hardware. 



3.2.8 Resuits Display 
Workstations with high resolution interactive graphics displays are highly 

desirable for many NASA applications. Although the cost of these units is 
decreasing rapidly for given computational power, NASA cannot afford to be 
simply a customer for whatever the market happens to offer. NASA needs to  
maintain personnel who have expertise in modern graphics systems; these persons 
will be required on CP projects to help put together the advanced user interfaces 
that meet NASA’s specifications. NASA experts in human factors, who have 
considerable experience from past NASA missions, can help design highly useful 
display systems and may contribute ideas that can feed back to industry. 

3.2.9 Special Purpose Machines 
There was a debate among workshop participants about the importance of 

special purpose machines. One group believes that VLSI design technology will 
eventually become so advanced that “silicon compilers” will be available for 
creating hardware implementations of algorithms. The other group believes that 
special purpose hardware will be more cost effective only when general purpose 
hardware cannot provide needed functions efficiently; they cited special address- 
ing modes (such as bitreversal in the Fast Fourier Transform) and frequently 
used complex functions (such as manipulation of Boolean matrices in image prob- 
lems) as examples. 

NASA spaceborne applications have extreme constraints on the size, mass, 
power consumption, and ruggedness of circuits. These constraints may justify 
special purpose hardware in flight vehicles that could not be justified for 
hardware on the ground. 

3.2.10 Hardware Technology Trends 
By hardware technology we mean microelectronics and device technology: 

materials, fabrication, and packaging. Given the intense interest in these sub- 
jects in industry and as part of the DARPA VHSIC and Strategic Computing 
plans, there is little need for NASA to devote its funds to this topic. On the 
other hand, NASA needs to keep abreast of the field because i t  may need to 
select technologies for compact computer systems for space vehicles. 

3.2.1 1 Experimental Machines 
We believe that  advancement of CP research, especially in algorithms for 

specific problem domains, requires direct experience with new machines. NASA 
should acquire such new equipment as parallel machines, attached processors, 
workstations, displays, and expert systems as they become available and test 
them in experiments. Understanding the strengths and weaknesses of new 
designs is a key step in the continuing development of any technology. NASA 
has a user community with skills in many demanding applications areas and 
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much experience in evaluating new computer hardware; NASA should more 
aggressively pursue status as a “beta test site” for such new units as pertain to 
its CP missions. 

NASA can also fruitfully apply its applications and experience in high per- 
formance computing by working to develop the design for CP systems; fabrica- 
tion would be done by an outside contractor. NASA can make the resulting pro- 
totype available to the larger research community via computer networks. 
Another benefit to the Agency would be the development of in-house expertise in 
system design. 
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4.  RESEARCH PROGRAM STRATEGY 

We have intentionally stressed policies that should govern CP research pro- 
jects rather than the details of the tasks that might be contained in these pro- 
jects. These policies embody a strategy tha t  will maximize the prospects of use- 
ful results based on solid conceptual foundations. The principles we recommend 
are: 

1. Systems Approach. NASA should support only those CP projects 
that  focus on complete systems comprising concurrent hardware, CP 
programming environments, software parts technology, and high-level 
user interfaces that incorporate knowledge of the problem domain in 
which the system is used. 

The systems approach is recommended so that NASA can help the R&D com- 
munity break out of the pattern of taking each new high-performance hardware 
unit as an immutable object for which languages must be defined and suitable 
applications discovered. 

2. Multidisciplinary Teams. To implement the systems approach, 
research teams should contain members or active consultants from the 
various subdisciplines tha t  affect the project. This means the teams 
should typically contain expertise in hardware, software systems, graph- 
ics, concurrent algorithms, human factors, reliability, and the applica- 
tions domain. (Some team members may be experts in more than one 
of these specialties.) 

Multidisciplinary teams are the hallmark of NASA projects and missions in the 
past; the same approach should be used in the future. 

3. Strong Conceptual Bases. CP research projects should be based 
on clear technical principles. We recommend using the computational 
model as the focus. Some of the most challenging technical problems 
will be in understanding the properties and limitations of a model, 
optimizing the mappings from algorithms to model to  hardware, ensur- 
ing fault tolerance of the model, building programming environments 
and parts libraries, and constructing knowledgeable user interfaces. 

Experience has shown that projects without solid conceptual bases are likely to 
fall behind schedule, be difficult to manage, produce unreliable systems, and 
have little impact when completed. 

4. Experimentation. Experimentation is important at all stages of a 
project. This includes building and measuring prototypes; deferring 
final decisions on language, model, and architecture until the team can 
adequate evaluate the alternatives and tune the design; and determin- 
ing by experiment how well each problem domain is served by a given 
combination of model and machine. 

As part of the orientation toward experimentation, NASA should make it a point 
to  acquire new CP hardware as it becomes available and systematically evaluate 
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it for possible NASA use. NASA should pursue status as a “beta test site“ as 
another way of gaining experience with new CP systems. Even if few machines 
are found to be useful for NASA, the in-house expertise in advanced architecture 
thereby accumulated will be worth the investment. NASA may wish to direct 
construction of prototype CP computers to investigate specific research issues 
not otherwise addressed in available machines. Prototype CP hardware and 
software should be made available to the community of CP researchers, not just 
those within NASA. 

5. Cooperation. NASA should make every attempt possible to 
cooperate with other CP research programs, not only those in univer- 
sity and industrial laboratories, but also in other agencies such as 
DARPA, NSF, O N R ,  and DOE. 
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5 .  CONCLUSIONS 

NASA is uniquely suited to undertake the research program outlined in this 
report. It is unlikely tha t  a single industry or university research institution 
would undertake on its own a program of this scope. NASA has the influence 
and resources to accomplish this program, and the interdisciplinary project 
management experience to make the program’s components work together suc- 
cessfully. This program is ambitious. But i t  is doable because many of the 
needed components already exist. The bulk of the program describes a way to 
combine existing technologies. 

The research to be performed in this program will help provide the com- 
puter systems necessary to continue the pace of NASA research and develop 
ment. In the past, when new, powerful tools were introduced into science and 
engineering, the rate of new accomplishment increased. CP systems have this 
potential for NASA. 

NASA has maintained a high rate of important technological spin-offs 
throughout its history. This research program promises to be no different. The 
cooperative nature of many of the specific endeavors of the program will speed 
the transfer of knowledge to those outside. The use of CP systems in the vari- 
ous applications outlined will directly benefit those applications. 

The technological leadership of the United States has been and will continue 
to be challenged by the nations of the world. Computers and aerospace vehicles 
are two areas in which the U.S. has enjoyed the social and economic benefits of 
preeminence. Continued leadership requires aggressive pursuit of advanced 
research programs, such as this for CP. 


